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Abstract Falls are the major causes of fatal injury for the
elderly population. To remedy this, several elderly people
monitoring systems with fall detection functionality have
been proposed. In this work, we investigate a video-based
method of detecting fall incidents from multiple cameras.
Our goal is to propose a novel method to detect falls on the
floor with a multiple-camera system using the percentage
of human-occupied areas. We suggest the use of two rel-
atively orthogonal views to estimate the percentage of the
surface of the person which is in contact with the ground
according to the foreground information of each camera.
These features are computed to differentiate by an auto-
matic manner the lying on floor posture which can be
considered as fall to other position such as standing up or
sitting. This method is evaluated on a public multi-view
fall detection dataset which contains videos of a healthy
subject who performed 24 realistic scenarios. These sce-
narios show 22 fall events and 24 confounding events.
The results of our experiments show that our proposed
algorithm achieved 95.8 % sensitivity and 100 % speci-
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ficity with less computational costs than state-of-the-art
methods.
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1 Introduction

Analyzing the frames of an input video using the computers
to extract any unusual activity is the principal task of an auto-
matic video surveillance system. Vishwakarma and Agrawal
[1] present some activity recognition and behavior under-
standing using an automatic video surveillance system. One
of the important human behaviors is the fall. Indeed, the risk
of falling rises when people become older. In fact, according
to Gillespie et al. [2] 30 % of people over 65 years old fall
each year. The fifth of these fall events requiresmedical inter-
vention because they cause serious injuries such as fractures
and head injuries. [3,4]. After the fall, people cannot always
contact emergency services. Then fall problem becomes
more important for elderly peoplemonitoring.Automatically
detecting falls is an essential part of a system for maintaining
elderly person. It can enable rapid response against falls and
minimize additional complications from a long period in a
fallen position. It also can alert caregivers of the need for pre-
emptive measures for a patient. Thus, if automatic fall detec-
tion system is accurate, appropriate measures will be taken
quickly to accelerate and improve the medical care provided.

It, therefore, becomes essential to understand the charac-
teristics of the fall. We are in the presence of fall when the
person suddenly leaves from a normal posture (such as sitting
or standing) to lying on the ground position for an extended
period. We distinguish two typical scenarios of fall activities
[5]:
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– falling from sleeping or sitting. This fall occurs when
people try to get up or stand up. Itmay due to the dizziness
or syncope.

– falling fall from standing or walking. This fall occurs
when people perform daily activities (carrying objects,
doing housework, etc.) and lost their balance.

It is also essential to discriminate fall from like-fall events.
The event such as sitting down brutally on a sofa, and
kneeling on the ground should not be considered as fall.
Challenges of indoor video surveillance like dynamic light-
ing conditions, low difference between human appearance
and background, and occlusion also pose considerable diffi-
culties in the implementation of a video surveillance system
for automatic fall detection.

In this research work, we are interested in suggesting an
efficient video surveillance system for automatic fall detec-
tion. Our goal is to obtain some reasonable results quickly.
Our principle contributions in this paper are:

1. We propose using the estimation of the surface of the
person which is in contact with the ground to establish
the model that distinguishes lying on the ground position
to other positions.

2. We use two relatively orthogonal views to estimate the
surface of the person which is in contact with the ground
according to the foreground information of each camera.
This estimation is performed using homographic pro-
jection. In a case of overlapping cameras, homography
consists in finding a matrix which corresponds a points
pt (x, y) of a camera view to another point pt ′(x ′, y′) of
another camera view.

This paper consists of five sections. The related works are
presented in Sect. 2. Section 3 describes the details of our
proposed method. A presentation of the experiment environ-
ment and the performance comparison are reported in Sect. 4.
We conclude the work in Sect. 5.

2 Related works

Fall detection methods can be subdivided into three cate-
gories. The algorithms of the first category are based on
wearable devices whereas algorithms in the second cate-
gory used the ambiance sensors and the third category used
cameras. The ambient device-based approaches use pressure
sensors to detect and track the subject. The detection and the
tracking are based on the subject’s weight which is obtained
using the pressure sensor. The implementation of these sys-
tems is cost effective and less intrusive. But they have a big
disadvantage. In fact, the detecting of any other pressure in
and around the subject creates a false alarm in case of fall

detection. That causes a low fall detection accuracy. To over-
come these limitations, some researchers propose to use a
computer vision system to detect fall. This kind of system has
twomajor advantages. First, it does not require that the person
wears anything. Second, a camera gives more information on
the motion of a person and his/her actions than other devices.
Thus, a camera-based system does not provide only informa-
tion on falls, but it also gives information on daily behaviors
(medication intake, meal, sleep time and duration, etc.). For
that reasons, we propose a method using the cameras. Then,
we focus our related work on camera-based methods. A
complete review on fall detection algorithms is provided by
Mubashir et al. [6].

Most of the researchworks concerning fall detection relies
on a single-view approach [7–11]. This is due to the avail-
ability of a single camera surveillance system and to the
implementation of these systems which is easy. But, it is dif-
ficult to detect efficiently falls of people from a single simple
camera view. When the system works well, its complexity
is often very large and it takes strong assumptions. To over-
come this drawback, several research works propose to use
depth cameraswhich are placed on the ceiling [12–17]. Some
research works proposed to use multi-cameras system for
people fall detection. The multi-cameras systems take a lot
of scope in an automatic visual surveillance system. Indeed,
they can serve efficiently to monitor and to supervise signifi-
cant sites, to control and to estimate flows (car parks, airports,
ports, and motorways). Because of the fast growing of
data processing, communications and instrumentation, such
applications become possible. This kind of systems requires
more cameras to cover overall field-of-view. Using several
views of the same scene (multi-view) can allow to recover the
information that could have been hidden in a specific view
and consequently the effects of objects dynamic occlusion
are reduced. In this category, Auvinet et al. [18,19] propose
to reconstruct the 3D shape of the person for fall detection
using a network of multiple calibrated cameras. They extract
a feature which represents the volume distribution along the
vertical axis. Fall events are then detected by analyzing this
feature. They trigger an alarm when the major part of this
feature is abnormally near to the floor. In a later work, they
define a period of time t before triggering the alarm [20].
Then, the fall alarm is triggered when the major part of the
volume distribution along the vertical axis is abnormally near
the floor during t . Other researchers have also used the 3D
reconstruction to detect fall. For example, Anderson et al.
[21,22] have also used 3D reconstruction. They suggest a
hierarchy of fuzzy logic to detect falls. Their method consists
of two levels. The first level extracts the states of the person
at each frame whereas, the second level deals with linguis-
tic summaries of the subject’s states called “Voxel Person”.
The two levels are fused using a fuzzy logic system. These
methods provide good results, however, 3D reconstruction
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process requires more processing time. To overcome this
drawback, some researchers have proposed methods with
less computational cost. Thome et al. [23] suggest a layered
hidden Markov model (LHMM) for modeling motion with
fall detection. This modeling is performed with two layers.
The first layer models two postures, an upright standing pose
and lying pose. They observe the 3D angle relationships and
perform an initial image metric rectification. They deduce
some theoretical properties from binding the error angle for
a standing posture. This differentiates other posture as “non-
standing” ones. Thus, falls are accurately detected from other
actions, such as walking or sitting. Cucchiara et al. [24] sug-
gest a multiple cameras system to monitor different rooms of
a smart home. Each room is controlled by a single camera.
They carried out analysis of human behaviors by classifying
the posture of the subject and consequently detecting falls
using the projection histograms. These histograms are calcu-
lated and compared with the stored posture maps which are
obtained after training. Cucchiara et al. also propose a track-
ing algorithm which deals with occlusions. Zweng et al. [25]
also use multiple cameras for fall detection without exter-
nal camera calibration. For each camera of the network, they
associate a fall confidence to the subject. Finally, they fuse
all single decisions to make an overall fall detection deci-
sion. Hung et al. [26,27] propose the using of the measures
of humans heights and occupied areas to distinguish three
states of humans which are standing, sitting and lying. They
prove that two relatively orthogonal views are sufficient to
estimate the occupied areas and the height.

In this work, we propose a high-level fusion information
for fall detection which is not based on 3D reconstruction
with less computational cost. In our method, individual cam-
eras do not extract features but provide foreground bitmap
information to the fusion center. Then a fall detection deci-
sion is taken by the fusion center using the estimation of
the percentage of people surface which is in contact with
the ground. In this work, we decided to use the information
from two cameras because when we have two cameras with
complementary views, they provide sufficient information
for decision-making. We choose two relatively orthogonal
cameras. Indeed, the estimation of the percentage of human’s

Fig. 1 Person viewed by two overlapping cameras

surface which is in contact with the ground is highly sensi-
tive to both the occlusions that had frequently happened in
the indoor environments mainly by the furniture, the false-
positive detection and the true-negative detection. However,
under two relatively orthogonal views, we realize that peo-
ple are partially occluded in one view but likely visible in
the other one. The aim of our method is to use the surface of
contact between the individual and the ground to detect the
fall. The use of the multi-cameras system also reduces the
errors because we exploit more information to take a deci-
sion. Using Fig. 1, we note that when the two cameras views
are complementary, the intersection of the homographic pro-
jection of their foreground pixels into reference approximates
the contact surface between the individual and the ground.
We use this information to extract important features for the
detection of the fall.

3 Proposed algorithm for fall detection

In this section, we present our proposed approach. Figure 2
presents the architecture of our proposed system. According
to this figure, our fall detection method is divided into five
modules:

– single foreground maps detection: this module identifies
the foreground pixels of each camera view;

– foreground information fusion: this module merges the
two foreground pixels obtained using the first module to
get a global information of the scene;

– features extraction: this module extracts some surfaces to
characterize the posture of the person. The goal is to dis-
criminate lying on the ground position to other postures;

– tracking: this module is adopted to support people fall
detection, by keeping track of people movements and of
their identities along time;

– decision-making: this module identifies if the person is
in critical position or not.

These modules are described below.

Fig. 2 Architecture of our proposed system
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Fig. 3 Flow diagram of the
moving object extraction
algorithm (the solid lines
correspond to the learning
phase; dashed lines correspond
to the phase of moving objects
detection)

3.1 Foreground map detection

The first step of our fall detection method is the extraction
of the foreground map of each camera. This extraction is
done in two steps. The first step is the extraction of the
foreground pixels and the second is the grouping of these
pixels using polygons. The purpose of this grouping is the
reduction of information which will be processed. For the
foreground pixels detection, we use a background modeling-
based algorithm. In fact in a single camera system, many
algorithms about object detection exist with different pur-
poses. These algorithms are subdivided into three categories:
without background modeling, with background modeling
and combined approach. Algorithms based on background
modeling are recommended in case of dynamic background
observed by a static camera. These algorithms are also robust
in the case of illumination variation. In this work, we use
the algorithm proposed by Mousse et al. [28] because they
proved the efficiency and the efficacy of this algorithm. We
chose this algorithm because it has a good performance in
moving object detection. This method integrates a region-
based information using superpixel segmentation algorithm
into the original codebook algorithm and uses CIE L*a*b*
color space information. Figure 3 represents the flowdiagram
of the codebook-based algorithm. For each frame, after the
extraction of superpixels, we build a codebook background
model. Let P = {s1, s2, . . . , sk} represent the K superpix-
els obtained after superpixels segmentation. Each superpixel
s j , j ∈ {1, 2, . . . , k} is composed by m pixels. With each
superpixel, we build a codebookC = {c1, c2, . . . , cL }which
contains L codewords ci , i ∈ {1, 2, . . . , L}. Each code-
words ci consists on an vector vi = (āi , b̄i ) and 6-tuples
auxi = {Ľi , L̂i , fi , pi , λi , qi } in which Ľi , L̂i are the mini-
mumandmaximumof luminance value, fi is the frequency at
which the codeword has occurred, λi is the maximum neg-
ative run length defined as the longest interval during the
training period that the codeword has not recurred, pi and
qi are the first and last access times, respectively, that the

codeword has occurred. L̄, ā, b̄ are, respectively, the average
value of component L*, a* and b* in a superpixel. The code-
book model is created or updated using two criteria. The first
criterion is based on color distortion (1) whereas the second
is based on brightness distortion (2).

√
||pt ||2 − C2

p ≤ ε1 (1)

Ilow ≤ I ≤ Ihi (2)

In (1), the autocorrelation value C2
p is given by Eq. (4) and

||pt ||2 is given by Eq. (3).

||pt ||2 = ā2 + b̄2 (3)

C2
p = (āi ā + b̄i b̄)2

ā2i + b̄2i
(4)

In (2), Ilow = α L̂i , Ihi = min{β L̂, Ľ
α
} and I = L̄ .

After the extraction of foreground pixels, we group them
into foreground region. The grouping the foreground pixels
in a polygon to reduce the data. Indeed when we group the
foreground by polygon, we only use the vertices of this poly-
gon during our process. The polygon is obtained by searching
the convex hull of all contours detected in threshold image.

Let us consider a set X of point. The convex hull of X is the
convex set that contains all points of X . To obtain the convex
hull, we search the point of X that belongs to the minimal
convex hull. Most of the time, this point is the point of X that
has the least x-coordinate. After that we create a list P . In
P , we store the numbers of the points and their positions in
X . We sort X in increasing order (except for P[0] which is
the first point) using a pair-wise comparison of the elements.
For the points, the comparison takes into account their left
position with regard to the starting R = X P[0] point. If C
point is on the left fromRBvector then B < C . This allows us
to have a startingpoint for our polygon and apotential order in
the succession of the vertices of the polygon (confers Fig. 4a).
Finally, you cut the angles. Then, we create a list S and place
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Fig. 4 Example of detection of the convex hull of a set of points

P[0], P[1] into it. We look through all other vertices of P
by keeping track of recent three points and find the angle
formed by them. If the orientation angle formed with these
points is not counterclockwise, we cut it and remove the last
vertex from S. Otherwise, if the orientation of the angle is
clockwise, we place the current vertex into S. This last step
is illustrated by Fig. 4. Then, all regions can be approximated
by a polygon and each polygon is convex. Figure 5 presents
an example of the approximation of foreground maps by a
polygon.

3.2 Foreground maps fusion

After the extraction of the foreground maps, they need to be
fused to obtain a more global information. The foreground
maps fusion is based on homography.Homographies are usu-
ally estimated between a pair of images by finding feature
correspondence in these images. To perform the homography
mapping, the most commonly used feature is corresponded
points in different images, though other features such as lines
or conics in the individual images may be used. These fea-
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Fig. 5 Result of foreground map extraction. The first column shows the input frame, the second column shows the foreground pixels detected, the
third column presents the foreground maps and the fourth column presents the polygons

tures are selected and matched manually (or automatically)
from 2D images to compute the homography between two
camera views or the homography between one camera view
and the top view. Then, different views of the same scene
are related by a homography that consists of a 3 × 3 matrix
which maps points on a plane in one view [29]. In the case of
calibrated cameras, homographies can be constructed from
calibration parameters [30]. If, instead, such information is
not available, the homographies can be estimated. In the lat-
ter case, given a set of pixels x j

i in the j th view I tj and a

corresponding set of pixels xki in the kth view I kt , the task
is to compute the projective transformation, a 3 × 3 matrix
H , that maps each xki to x j

i , i.e., x
j
i = Hxki for each i . To

obtain H , we use a feature-based approach using scale invari-
ant feature transform keypoints [31] that are extracted from
one view and then matched to those extracted from a differ-
ent view. The homography H is then estimated by means of
direct linear transformation [29] and random sample consen-
sus [32] algorithms, that yield an initial guess for H and a list
of inlier matches. The initial estimated homography H can
be further refined using Levenberg–Marquardt optimization
minimizing the re-projection error. Using the principle of the
homography, we choose the reference view and we project
the polygons from the second view to the reference view. A
polygon projection is performed by projecting only the ver-
tices of the polygon. After the projection, the intersection
of the polygons represents the moving object which will be
tracked.

3.3 Features extraction

After the projection of foreground maps, we extract some
surfaces to characterize the posture of the people. For each
individual, we compute the surfaces ωi , i ∈ {1, 2} of the
polygons obtained by projecting the polygons associated
with this individual in each camera into the reference view.
After that, we also evaluate the surface σ of the polygon
which is the intersection of the two projected polygons in the
reference plane. With these features we compute �1 = σ

ω1
and �2 = σ

ω2
. �1 and �2, respectively, represent the percent-

age of surface in contact with the ground detected by the first
camera and the second camera. These last two values allow

Fig. 6 Example of using of the proposed features for fall detection
(scenario 1)

Fig. 7 Example of using of the proposed features for fall detection
(scenario 2)

us to assess the posture of an individual. Indeed, when the
individual approaches the ground (falling), the values of �1
and �2 will be greater (close to 1). Some examples of using
�1 and �2 for fall detection (based on some scenario taken
from the dataset which is used in this paper and described in
the Sect. 4.1) are shown by Figs. 6, 7 and 8.

3.4 Tracking

The object tracking is performed by the fusion center. It is
based on spatial location of objects. In each frame, the object
takes the id of the object from the previous frame that has the
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Fig. 8 Example of using of the proposed features for fall detection
(scenario 3)

lowest spatial distance. When a new object appears on the
scene, the number of objects for an image will be higher than
the one in the previous image. Then, we associate a new id
to the object which does not correspond to previous objects.
When an object leaves the scene, the number of objects will
be lower than for the previous one. Then, the previous object
which does not correspond to an object in the current image
is not considered anymore.

3.5 Decision-making

Using the feature extracted in Sect. 3.3, we classify the
posture. This classification is into two groups: lying down
position and other positions (standing up, sitting, crouching
positions). The values of the thresholds are fixed according
to our experiments. During these experiments, we use one
video sequence (sequence of the ninth scenario) in the dataset
described in Sect. 4.1 to finding the threshold. The choice of
this sequencewas done according to twomajor reasons. First,
it includes the three most important positions: sitting, stand-
ing up and lying on the ground. Second, this sequence is
also used for the training step of other research works which
exploit this dataset. Using the result of this training step, the
posture of the person can be classified according to the values
present in Fig. 9. This figure, respectively, shows�1 values on
the x-axis and �2 values on the y-axis. Thus, for one person,
if �1 < 0.4 or �2 < 0.4 then we conclude that this person is
in a posture other than lying on ground position. Whereas if
the condition ((�1 ≥ 0.6 and �2 ≥ 0.72) or (�2 ≥ 0.6 and
�1 ≥ 0.72)) is true then the person is lying on the ground
plane. When a person changes rapidly from the first group
of posture to lying on the ground posture, a warning state is
attached to him and when he did not come quickly, an alarm
is emitted to indicate the fall. In this work, we assume that the
person changes rapidly posture when the delay between this
change is less or equal to 1.5 s. After the warning state, we
propose that the person stays down for 3 s before the alarm
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Fig. 9 Position classification

is triggered. This delay is important to manage the people
who fall and get up afterward. In addition, if after the trig-
gering of the alarm, the posture of the person is other than
”lying down”, we expect 3 s before disabling the alarm. By
proceeding like that we limit the false negatives.

The systemattempts also to solve the problemof occlusion
by objects. Indeed, when the person is occluded by an object,
the estimation of ω1 and/or ω2 will be biased. But, in an
indoor environment, the person is rarely occluded in both
two views of the orthogonal cameras. So, one of the values
between ω1 and ω2 is correct. Then, the features �1 and �2
are more reliable because they are obtained after the fusion
of ω1 and ω2.

4 Experimental environment and performance
evaluation

4.1 Experimental environment

In this paper for our experimental results, we use the “Multi-
view fall dataset” proposed by Auvinet et al. [33], which was
adopted in the experiments of many research works. Then,
it is possible to compare the performance of our proposed
algorithm to some past research works’ performance. Eight
inexpensive IP cameras with a wide angle were set up to
cover the whole room. The experimental environment is pre-
sented in Fig. 10. This dataset contains 24 scenarios. These
scenarios show 24 fall incidents and 24 confounding events
(11 crouching, 9 sitting, and 4 lying on a sofa). All events are
viewed by all the cameras and are performed by one subject.
The normal daily activities includewalking in different direc-
tions, housekeeping, activities with characteristics similar to
falls (sitting down/standing up, crouching down)whereas the
simulated falls include forward falls, backward falls, falls
when inappropriately sitting down, and loss of balance. Falls
were performed in different directions with respect to the
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camera point of view. The sequences also contain confound-
ing events that include crouching, kneeling, carrying objects,
doing housework, etc. Camera settings, spatial arrangement,
information of multi-cameras synchronization, calibration
parameters, and event annotation for all scenarios are pro-
vided in their study [33]. The sequences contain also some
difficulties which can lead to segmentation errors such as
shadows, reflections, variable illumination, and occlusions.
Figure 11 presents some examples of typical simulated fall
incidents and normal daily activities are shown. For single-
view object detection, we use parameters defined in [28].
The experimental environment is Intel� Core™i7 CPU L
640 @ 2.13GHz × 4 processor with 4 GB memory and the
programming language is C++. In this paper, we use video

Fig. 10 Experimental environment

sequences from five pairs of cameras. The first pair is com-
posed by the cameras 1 and 3, the second pair is composed
by the cameras 2 and 5, the third pair is composed by the
cameras 4 and 7, the fourth pair is composed by the cam-
eras 6 and 3 and the fifth pair is composed by the cameras 5
and 8. Figures 12 and 13 represent some examples of finding
polygon intersection in the ground plane using the first pair
of cameras (cameras 1 and 3).

4.2 Performance evaluation

In this subsection, we evaluate the performance of our pro-
posedpeople fall detection and compare itwith other research
works [8,20,26]. We compute some metrics for testing the
efficiency and the accuracy of our algorithm and compare
it with the cited papers which are also tested on the same
dataset. These metrics are sensitivity Se and specificity Sp.

Se = TP

TP + FN
(5)

Sp = TN

TN + FP
(6)

In (5) and (6), TP is the number of falls correctly detected,
FN is the number of falls not detected, TN is the number of
normal activities not detected as a fall and FP is the number
of normal activities detected as a fall. High sensitivity means
that most fall incidents are correctly detected. Similarly, high
specificity implies thatmost normal activities are not detected
as fall events.Agood fall detectionmethodmust achieve high

Fig. 11 Examples of falls and normal daily activities
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Fig. 12 The first row shows the
camera views, the second row
shows the foreground maps
detected, the third row presents
the surface in contact with the
ground

Fig. 13 The first row shows the
camera views, the second row
shows the foreground maps
detected, the third row presents
the surface in contact with the
ground

values of sensitivity and specificity. The results are reported
in Table 1. In this table,

– the results of our method are the same for all pairs of
cameras we used in our experiments. This is explained
by the fact that the falls are observed by all the cameras;

– the results of the method proposed by Hung and Saito
[26] are obtained using cameras 2 and 5;

Table 1 Performance comparison between our method and three state-
of-the-art methods, tested on the same dataset

Sensitivity (Se, %) Specificity (Sp, %)

Our method 95.8 100

Auvinet et al. [20] 80.6 100

Rougier et al. [8] 95.4 95.8

Hung and Saito [26] 95.8 100
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Table 2 Speed comparison

Hung and Saito [26] Proposed method

Speed (fps) 10.95 15.25

The bold value is the best value

– the results of the method proposed by Auvinet et al. [20]
are reported using a network of three cameras. Because
of the 3D reconstruction method used by Auvinet et al.
it is impossible to have acceptable results with less than
three cameras. Auvinet et al. prove that the sensitivity
can be boosted to 100 % if a network of more than four
cameras is employed.

By comparing algorithmswe conclude that our algorithm has
similar performance to recent algorithms. Such as Hung and
Saito [26] algorithm, our method only fails in the 22nd sce-
nario in which the person is sitting on a chair and suddenly
slips to the floor. However, both Auvinet et al. and Rougier
et al. methods are of high computational costs because they
are based on 3D reconstruction algorithm. 3D reconstruction
algorithm also requires a lot of camera view to obtain a good
result. Rougier et al. [8] report the implementation of 5 fps
and argues that this frame rate is sufficient for detecting fall
events. Auvinet et al. [20] present the GPU implementation
to realize their method in real time. But our method is imple-
mented in a common desktop which is described in Sect. 4.1.
We compare our processing time to the processing time of
the method proposed by Hung and Saito [26] which is also
implemented in real timeon a desktop. The speed comparison
is presented in Table 2 and the value is expressed in frames
per second. Results of this table are obtained using the same
environment (we use the same pair of cameras (camera 2 and
camera 5) and the same scenario (scenario 9 of the dataset)
during the learning step to extract the thresholds). Accord-
ing to this table, we conclude that our algorithm is of lower
computational cost than the algorithm proposed byHung and
Saito [26]. This is due to several aspects:

– the use of superpixels clustering algorithm in foreground
pixels extraction module reduces the computational cost
of moving object detection;

– the approximation of the foreground pixels using poly-
gons and the fusion of these polygons using homography
mapping is less complex than the estimation of width and
height proposed by Hung and Saito [26].

Therefore, we conclude that our multi-cameras system uses
the smallest number (two) of cameras and has the smallest
computational complexity compared with existing methods.

5 Conclusion

We have presented a novel video-based method of fall
detection. The proposed approach contains two main com-
ponents, object detection and the use of a falling model.
For object detection, we use a codebook-based method and
we approximate the foreground pixel using polygons. This
approximation reduces the number of informationwhichwill
be processed by the fusion process. This fusion is done using
homography mapping. For the fall model, we extract a set of
features such as the surface of the polygon and the percent-
age of the surface which is in contact with the ground. Our
experimental results using public dataset show that the pro-
posed method can accurately detect a single falling person.
The limitations of our method are not unexpected. First, such
as all automatic video surveillance systems, our fall detec-
tion method is highly dependent on each camera foreground
pixel detection. Then the presence of false positive (false
detection) and/or false negative (misdetection) can influence
the fall detection results. Some errors will also occur if non-
human objects appear in the scene.
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